Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(4)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38396798

RESUMO

Currently, viable antibiotics available to mitigate infections caused by drug-resistant Gram-negative bacteria are highly limited. Thanatin, a 21-residue-long insect-derived antimicrobial peptide (AMP), is a promising lead molecule for the potential development of novel antibiotics. Thanatin is extremely potent, particularly against the Enterobacter group of Gram-negative pathogens, e.g., E. coli and K. pneumoniae. As a mode of action, cationic thanatin efficiently permeabilizes the LPS-outer membrane and binds to the periplasmic protein LptAm to inhibit outer membrane biogenesis. Here, we have utilized N-terminal truncated 16- and 14-residue peptide fragments of thanatin and investigated structure, activity, and selectivity with correlating modes of action. A designed 16-residue peptide containing D-Lys (dk) named VF16 (V1PIIYCNRRT-dk-KCQRF16) demonstrated killing activity in Gram-negative bacteria. The VF16 peptide did not show any detectable toxicity to the HEK 293T cell line and kidney cell line Hep G2. As a mode of action, VF16 interacted with LPS, permeabilizing the outer membrane and binding to LptAm with high affinity. Atomic-resolution structures of VF16 in complex with LPS revealed cationic and aromatic surfaces involved in outer membrane interactions and permeabilization. Further, analyses of an inactive 14-residue native thanatin peptide (IM14: IIYCNRRTGKCQRM) delineated the requirement of the ß-sheet structure in activity and target interactions. Taken together, this work would pave the way for the designing of short analogs of thanatin-based antimicrobials.


Assuntos
Proteínas de Escherichia coli , Lipopolissacarídeos , Lipopolissacarídeos/metabolismo , Peptídeos Antimicrobianos , Escherichia coli/metabolismo , Peptídeos Catiônicos Antimicrobianos/química , Antibacterianos/química , Bactérias Gram-Negativas/metabolismo , Testes de Sensibilidade Microbiana , Proteínas de Transporte/metabolismo , Proteínas de Escherichia coli/metabolismo
2.
ACS Chem Biol ; 17(12): 3420-3434, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36367958

RESUMO

Naturally occurring cationic antimicrobial peptides (AMPs) mostly adopt α-helical structures in bacterial membrane mimetic environments. To explore the design of novel ß-sheet AMPs, we identified two short cationic amphipathic ß-strand segments from the crystal structure of the innate immune protein, MyD88. Interestingly, of these, the 10-residue arginine-valine-rich synthetic MyD88-segment, KRCRRMVVVV (M3), exhibited ß-sheet structure when bound to the outer membrane Gram-negative bacterial component, LPS. Isothermal titration calorimetric data showed that M3 bound to LPS with high affinity, and the interaction was hydrophobic in nature. Supporting these observations, computational studies indicated strong interactions of multiple and consecutive valine residues of M3 with the acyl chain of LPS. Moreover, M3 adopted nanosheet and nanofibrillar structure in 25% acetonitrile/water and isopropanol, respectively. M3 showed substantial antibacterial activities against both Gram-positive and Gram-negative bacteria which it appreciably retained in the presence of human serum and physiological salts. M3 was non-hemolytic against human red blood cells and non-cytotoxic to 3T3 cells up to 200 µM and to mice in vivo at a dose of 40 mg/kg. Furthermore, M3 neutralized LPS-induced pro-inflammatory responses in THP-1 cells and rat bone marrow-derived macrophages. Consequently, M3 attenuated LPS-mediated lung inflammation in mice and rescued them (80% survival at 10 mg/kg dose) against a lethal dose of LPS. The results demonstrate the identification of a 10-mer LPS-interacting, ß-sheet peptide from MyD88 with the ability to form nanostructures and in vivo activity against LPS challenge in mice. The identified M3-template provides scope for designing novel bioactive peptides with ß-sheet structures and self-assembling properties.


Assuntos
Lipopolissacarídeos , Pneumonia , Camundongos , Humanos , Ratos , Animais , Lipopolissacarídeos/química , Antibacterianos/farmacologia , Conformação Proteica em Folha beta , Endotoxinas , Bactérias Gram-Negativas , Fator 88 de Diferenciação Mieloide , Bactérias Gram-Positivas , Peptídeos Catiônicos Antimicrobianos/farmacologia , Valina , Pulmão
3.
Int J Mol Sci ; 24(1)2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36613707

RESUMO

Many antibiotics are ineffective in killing Gram-negative bacteria due to the permeability barrier of the outer-membrane LPS. Infections caused by multi-drug-resistant Gram-negative pathogens require new antibiotics, which are often difficult to develop. Antibiotic potentiators disrupt outer-membrane LPS and can assist the entry of large-scaffold antibiotics to the bacterial targets. In this work, we designed a backbone-cyclized ultra-short, six-amino-acid-long (WKRKRY) peptide, termed cWY6 from LPS binding motif of ß-boomerang bactericidal peptides. The cWY6 peptide does not exhibit any antimicrobial activity; however, it is able to permeabilize the LPS outer membrane. Our results demonstrate the antibiotic potentiator activity in the designed cWY6 peptide for several conventional antibiotics (vancomycin, rifampicin, erythromycin, novobiocin and azithromycin). Remarkably, the short cWY6 peptide exhibits wound-healing activity in in vitro assays. NMR, computational docking and biophysical studies describe the atomic-resolution structure of the peptide in complex with LPS and mode of action in disrupting the outer membrane. The dual activities of cWY6 peptide hold high promise for further translation to therapeutics.


Assuntos
Antibacterianos , Lipopolissacarídeos , Lipopolissacarídeos/metabolismo , Antibacterianos/farmacologia , Antibacterianos/química , Peptídeos Catiônicos Antimicrobianos/química , Azitromicina/farmacologia , Rifampina/farmacologia , Testes de Sensibilidade Microbiana , Bactérias Gram-Negativas
4.
Biochim Biophys Acta Biomembr ; 1864(3): 183839, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34915021

RESUMO

At present, antibiotics options to cure infections caused by drug resistant Gram-negative pathogens are highly inadequate. LPS outer membrane, proteins involved in LPS transport and biosynthesis pathways are vital targets. Thanatin, an insect derived 21-residue long antimicrobial peptide may be exploited for the development of effective antibiotics against Gram-negative bacteria. As a mode of bacterial cell killing, thanatin disrupts LPS outer membrane and inhibits LPS transport by binding to the periplasmic protein LptAm. Here, we report structure-activity correlation of thanatin and analogs for the purpose of rational design. These analogs of thanatin are investigated, by NMR, ITC and fluorescence, to correlate structure, antibacterial activity and binding with LPS and LptAm, a truncated monomeric variant. Our results demonstrate that an analog thanatin M21F exhibits superior antibacterial activity. In LPS interaction analyses, thanatin M21F demonstrate high affinity binding to outer membrane LPS. The atomic resolution structure of thanatin M21F in LPS micelle reveals four stranded ß-sheet structure in a dimeric topology whereby the sidechain of aromatic residues Y10, F21 sustained mutual packing at the interface. Strikingly, LptAm binding affinity of thanatin M21F has been significantly increased with an estimated Kd ~ 0.73 nM vs 13 nM for thanatin. Further, atomic resolution structures and interactions of Ala based thanatin analogs define plausible correlations with antibacterial activity and LPS, LptAm interactions. Taken together, the current work provides a frame-work for the designing of thanatin based potent antimicrobial peptides for the treatment of drug resistance Gram-negative bacteria.


Assuntos
Antibacterianos/metabolismo , Peptídeos Catiônicos Antimicrobianos/metabolismo , Peptídeos Antimicrobianos/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Lipopolissacarídeos/metabolismo , Antibacterianos/química , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Antimicrobianos/química , Proteínas de Transporte/química , Proteínas de Escherichia coli/química , Lipopolissacarídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...